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Abstract

A nonperturbative analytic solution of the high charge and energy
(HZE) Green's function is used to implement a computer code for
laboratory ion beam transport in multilayered materials. The code
is established to operate on the Langley nuclear fragmentation model
used in engineering applications. Computational procedures are es-
tablished to generate linear energy transfer (LET) distributions for a
speci�ed ion beam and target for comparison with experimental mea-
surements. The code was found to be highly e�cient and compared
well with the perturbation approximation.

Introduction

Green's function was identi�ed as the likely means of generating e�cient high charge and
energy (HZE) shielding codes for space engineering that are capable of being validated in

laboratory experiments (ref. 1). A derivation of Green's function as a perturbation series

gave promise for the development of a laboratory-validated engineering code (ref. 2), but

computational ine�ciency provided a major obstacle to the code development (ref. 3). More

recently, nonperturbative approximations to the HZE Green's function have shown promise in

providing an e�cient validated engineering code (refs. 4 and 5). Described in the present report

is a laboratory code using a nonperturbative Green's function to derive linear energy transfer

(LET) spectra behind multilayered targets for ion beams with Z (charges) � 28 corresponding

to the major components of the galactic cosmic ray spectrum.

Green's Function for a Single Medium

We restrict our attention to the multicharged ions (atomic number Zj and atomic mass Aj)

for which the Boltzmann equation may be reduced (ref. 6) to�
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where �j(x;E) is the ion 
ux at x with energy E (in MeV/amu), eSj(E) is the change in E

per unit distance, �j is the total macroscopic reaction cross section, and �jk is the macroscopic

cross section for the collision of an ion of type k to produce an ion of type j. The solution to

equation (1) is to be found subject to the boundary condition

�j (0; E) = fj (E) (2)

which, for laboratory beams, has only one value of j for which fj(E) is not zero and where fj(E)

is described by a mean energy Eo and energy spread � such that
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The usual method of solution is to proceed toward solving equation (1) as a perturbation series

(refs. 1 and 6). In practice, the computational requirements limit the usefulness of the technique

for deep penetration (ref. 3).



The Green's function (Gjm) is introduced as a solution of�
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eSj (E) + �j

�
Gjm(x;E;Eo) =

X
k

�jk Gkm(x;E;Eo) (4)

subject to the boundary condition

Gjm(0; E; Eo) = �jm� (E � Eo) (5)

where �jm is Kronecker's � and �(E � Eo) is Dirac's � function. The solution to equation (1) is

given by superposition as

�j (x;E) =
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Z
Gjk

�
x;E;E0

�
fk
�
E0
�
dE0 (6)

If Gjk(x;E;E
0) is known as an algebraic quantity, the evaluation of equation (6) may be

accomplished by simple integration techniques, and then the associated errors in numerically

solving equation (1) are avoided (ref. 7).

The above equations can be simpli�ed by transforming the energy into the residual range

(rj) as

rj =

EZ
0

dE0=eSj �E0� (7)

and de�ning new �eld functions as

 j
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f̂j
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rj
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= eSj (E) fj (E) (10)

Thus, equation (4) becomes�
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with the boundary condition

Gjm
�
0; rj; r

0

m

�
= �jm�
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rj � r0m

�
(12)

and with the solution to the ion �elds given by
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1Z
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Note that �j, which is the range scale factor as �jrj = �mrm, is taken as �j = Z2
j=Aj. The

solution to equation (11) is written as a perturbation series

Gjm
�
x; rj; r
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(14)
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in which

G
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where G
(1)
jm(x; rj; r
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for �m> �j. If �j > �m, as can happen in neutron removal, the negative of equation (16) is used

and the upper and lower limits of equation (17) are switched. The higher terms are approximated

as

G
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In the above equations,

g (j) = e
��jx (19)

and

g (j1; j2; : : : ; jn; jn+1) =
g (j1; j2; : : : ; jn�1; jn)� g (j1; j2; : : : ; jn�1; jn+1)

�jn+1� �jn
(20)

Note that G
(i)
jm(x; rj; r

0

m) is purely dependent on x for i > 0, which we represent as G
(i)
jm(x). (See

ref. 3.) In terms of the above, the solution to equation (1) becomes (from ref. 3)
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In equation (21), r0mu and r0
m̀

are given by the upper and lower limits of the inequality of

equation (17). The symbol bFm(r0m) refers to the integral spectrum

bFm�
r0m
�
=

1Z
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f̂m(r) dr (22)

We note that
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with
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fm(E) dE (24)
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and

r0m=

E0Z
0

dE=eSm(E) (25)

We now introduce nonperturbative terms for the summation in equation (21).

First, we recall that the g function of n arguments was generated by the perturbation solution
of the transport equation neglecting ionization energy loss (ref. 1) given by

�
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@x
+ �j

�
gjm(x) =

X
k

�jk gkm(x) (26)

subject to the boundary condition

gjm(0) = �jm (27)

for which the solution is

gjm(x) = �jm g (m) + �jm g (j;m) + � � � (28)

It is also true that

gjm(x) =
X
k

gjk (x� y) gkm(y) (29)

for any positive values of x and y. Equation (29) may be used to propagate the function gjm(x)
over the solution space after which
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The approximate solution of equation (1) is then given by
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which is a relatively simple quantity (ref. 4).

Green's Function in a Shielded Medium

The major simpli�cation in the Green's function method results from the fact that the scaled
spectral distribution of secondary ions to a �rst approximation depends only on the depth of
penetration as seen in equations (16), (18), and (30). Our �rst approach to a multilayered
Green's function will rely on this observation and assume its validity for multilayered shields.

If we consider a domain labeled as \1" that is shielded by a second domain labeled as \2,"
the number of type j ions at depth x in 1 due to type m ions incident on domain 2 of thickness y
is

g12jm(x; y) =
X
k

g1jk (x) g2km(y) (32)
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The leading term in equation (32) is the penetrating primaries as

g12jm(x; y) = e
��1jx��2jy�jm+

h
g12jm(x; y)� e

��1jx��2jy�jm

i
(33)

in which all higher order terms are within the brackets of equation (33).

The �rst term of the scaled Green's function is then

G
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0

m

�
= e��1jx��2jy�jm�
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x+ rj �
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r0
m
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��
(34)

in which � is the range scale factor for the two media

� =
R1j (E)

R2j (E)
(35)

The ratio of range in water to range in aluminum for proton beams (eq. (35)) is shown

in sketch A. We take a single value for � corresponding to 600 MeV/amu. The secondary

contribution is similarly found by noting that equation (17) becomes

�j

�m

�
rj + x+ �y

�
� r0m�

�j

�m
rj + x+ �y (36)

from which the average spectrum is evaluated. The full approximate Green's function is then

G12jm
�
x; y; rj; r

0

m
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m
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i

(x+ �y)
�
�m� �j

� (37)

Equation (37) is our �rst approximation to the Green's function in a shielded medium (two

layers) and is easily modi�ed to multilayers. We now consider the �rst spectral modi�cation.
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Showing that the �rst collision term has the properties
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is easy; we use these properties to derive a simple correction for the average spectrum as
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where g
(1)
12jm(x; y) is the �rst collision term of equation (39) and

�r0
m
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r0mu+ r0
m̀

2
(40)

is the midpoint of �r0m between its limits given by equation (36). The bjm term of equation (39)

has the property that Z
r
0

mu

r
0

m̀

bjm(x; y)
�
r0� �r0m

�
dr0 = 0 (41)

thus ensuring that the �rst term of equation (39) is, indeed, the average spectrum as required.

The spectral slope parameter is found to be

bjm(x; y) =
�j�m

�
�1jme

��1mx��2my � �2jme��1jx��2jy
�

(x+ �y)
�
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A similarly simple spectral correction can be made to the higher order terms. The spectral

correction given in equation (42) will be included in the present Green's function code.

LET Spectra for Laboratory Beams

We use the boundary condition appropriate for laboratory beams given by equation (3). The

cumulative spectrum is given by

Fj (E) =
1

2

�
1� erf

�
E �Eop

2�

��
(43)

The cumulative energy moment needed to evaluate the spectral correction is

Ej (E) =
1
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1� erf
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exp
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The average energy on any subinterval (E1; E2) is then

E =
Ej (E1) � Ej (E2)

Fj (E1) � Fj (E2)
(45)
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The beam-generated 
ux is
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where E is evaluated using equation (45) withE1 and E2 as the lower and upper limits associated
with r0

m̀
and r0

mu
, respectively.

The di�erential 
uence spectra for a 600-MeV/amu 56Fe beam with a 2.5-MeV/amu standard
deviation incident on a water slab are shown in �gure 1. A single layer of 5 cm of water is shown
in �gure 1(a) and a double layer of 2.5 cm of water followed by 2.5 cm of water is shown in
�gure 1(b). A consistency check is performed on the multilayered code by comparing it with
the single-layered computation when the two layers are of the same size and composition. The
ratio of multilayered results to single-layered results di�ers by less than �1 percent. The LET
distribution is found by using the methods of reference 8. The corresponding LET spectra are
shown in �gure 2. The highest LET peak is due to the primary beam and the iron fragments.
The successive peaks below iron are due to lower atomic weight fragments. The lowest LET peak
consists of relativistic charge fragments of p, d, and t particles that are produced in abundance
in HZE collisions (ref. 9). The peak near 10 MeV/cm consists of he- and �-particles that are
also produced abundantly. Many of the HZE fragments are produced with a charge near the
projectile charge, as Shinn, Townsend, and Wilson found earlier for hydrogenic targets (ref. 10).
Note that no distinguishable di�erence exists between the LET spectra of the single-layered code
(�g. 2(a)) and the multilayered code (�g. 2(b)) at the same penetration depth in water, which
further demonstrates code consistency.

A series of evaluations for a (2.24-g/cm2) lead-scattering foil is shown in �gure 3. The
lead-scattering foil is usually part of the accelerator beam line (at the Lawrence Berkeley
Laboratory Bevalac accelerator) with the result that the fragments from the lead target are
seen as contamination. Clearly, these fragments must be modeled to properly interpret the
attenuation of the beam in the water target in actual experiments. The corresponding LET
spectra at various depths of a water target are shown in �gure 4. The importance of the
fragmentation in the scattering foil is seen in comparing �gure 4(a) with �gure 4(b). Note
that fewer of the fragmentations result in fragments near the beam charge for the lead foil in
comparison with the water target, as seen by comparing the relative magnitudes of the three
highest LET peaks in �gures 2(a) and 4(a). These di�erences are part of the reason why
hydrogenic targets are important to space radiation protection. At greater depths the LET
distributions begin to overlap, and distinguishing the di�erent charge groups becomes more
di�cult. Such LET spectra will be compared with experimental measurements in the near
future.

Concluding Remarks

A formalism for the evaluation of Green's function in multilayered target con�gurations
has been derived and a computer code generated. The code satis�es a consistency check for
multilayered-material calculations when the layers are of uniform composition by comparing the
results with the single-layered code. The importance of the multilayered code in the analysis of
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experimental ion beams has been shown by demonstrating the e�ects of a lead-scattering foil in

the Bevalac beam line. An analysis of such experiments is in progress.

NASALangley Research Center

Hampton, VA 23681-0001
September 10, 1993
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(a) 0 cm of H2O followed by 5 cm of H2O.

(b) 2.5 cm of H2O followed by 2.5 cm of H2O.

Figure 1. Di�erential 
uence spectra for 600-MeV/amu 56Fe beam with 2.5-MeV/amu standard deviation
incident on water slab.

(a) 0 cm of H2O followed by 5 cm of H2O.

(b) 2.5 cm of H2O followed by 2.5 cm of H2O.

Figure 2. LET distribution for 600-MeV/amu 56Fe beam with 2.5-MeV/amu standard deviation incident on
water slab.

(a) 0 cm of H2O.

(b) 5 cm of H2O.

Figure 3. Di�erential 
uence for 525-MeV/amu 56Fe beam with 2.5-MeV/amu standard deviation after passing
through 2.24-g/cm2 lead-scattering foil and water target.

(c) 10 cm of H2O.

Figure 3. Concluded.

(a) 0 cm of H2O.

(b) 5 cm of H2O.

Figure 4. LET distribution for 525-MeV/amu 56Fe beam with 2.5-MeV/amu standard deviation after passing
through 2.24-g/cm2 lead-scattering foil and water target.

(c) 10 cm of H2O.

Figure 4. Concluded.



REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1993 Technical Memorandum

4. TITLE AND SUBTITLE

Approximate Green's Function Methods for HZE Transport in
Multilayered Materials

6. AUTHOR(S)

John W. Wilson, Francis F. Badavi, Judy L. Shinn, and Robert C. Costen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 199-45-16-11

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-17302

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-4519

11. SUPPLEMENTARY NOTES

Wilson, Shinn, and Costen: Langley Research Center, Hampton, VA; Badavi: Christopher Newport
University, Newport News, VA.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassi�ed{Unlimited

Subject Category 93

13. ABSTRACT (Maximum 200 words)

A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement
a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate
on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are
established to generate linear energy transfer (LET) distributions for a speci�ed ion beam and target for
comparison with experimental measurements. The code was found to be highly e�cient and compared well
with the perturbation approximation.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Radiation shielding; Multilayer; Green's function 15

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassi�ed Unclassi�ed

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102


